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Figure 1: Shadow removal in a distributed projector-camera system: (left) experimental system where two overlapping projectors were
applied for removing shadows caused by a moving occluder, (right) comparison of projected results in the lenna condition (see Sec. 5.1):
(top row) the results by the previous method [TIK15], (middle row) the results by the error propagation method, (bottom row) the results by
the change propagation method.

Abstract
This paper proposes a novel shadow removal technique for cooperative projection system based-on spatio-temporal predic-
tion. In our previous work, we proposed a distributed feedback algorithm, which is implementable in cooperative projection
environments subject to data transfer constraints between components. A weakness of this scheme is that the compensation is
conducted in each pixel independently. As a result, spatio-temporal information of the environmental change cannot be utilized
even if it is available. In view of this, we specifically investigate the situation where some of projectors are occluded by a moving
object whose one-frame-ahead behavior is predictable. In order to remove the resulting shadow, we propose a novel error prop-
agating scheme that is still implementable in a distributed manner, and enables us to incorporate the prediction information of
the obstacle. It is demonstrated theoretically and experimentally that the proposed method significantly improves the shadow
removal performance comparison to the previous work.

Categories and Subject Descriptors (according to ACM CCS): I.4.0 [Image Processing and Computer Vision]: General—Image
displays

1. Introduction

Shadow removal is an important fundamental technology for in-
teractive front projection systems such as spatial augmented real-

ity (SAR), in which shadows of projected images are frequently
casted, because users dynamically move between projectors and
surfaces, and consequently, block the projected images easily and
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unexpectedly. These shadows must be removed, as they poten-
tially occlude important projected information and detract from the
users’ visually immersive experiences. One of the most promising
shadow removal solutions is to employ multiple overlapping pro-
jectors, in which at least a projector visible from a shadow area
projects images onto it instead of the other occluded projectors.
Recently, ultra-short throw projectors are commercially available,
by which no shadow occurs for a flat projection surface, because
the distance between the projector and screen is very short. On the
other hand, the goal of this paper is to remove shadows in general
SAR applications where not only a single flat surface but also mul-
tiple non-planar surfaces located at different depths are assumed
to be projection surfaces [BR05]. Shadows can be caused in these
situations even when we use ultra-short throw projectors.

A multi-projection system should be scalable so that it accom-
modates the demand of increasing computational costs and com-
munications traffic when the number of projector nodes increases.
In other words, it is important to have a Plug-and-Play capability
by which a newly added (plug-in) projector node is automatically
connected to the system’s network. The system also should be ro-
bust for the failure (plug-out) of projector nodes at runtime. How-
ever, these issues have not been carefully considered in previous
works of the shadow removal researches, which consequently have
applied a centralized control approach in which a host node com-
putes projection images for all projector nodes. To achieve high
scalability, robustness and Plug-and-Play capability as mentioned
above, we previously proposed to apply a distributed optimization
algorithm based on distributed control theory to radiometric com-
pensation for a cooperative overlapping projection system [TIK15].
Although our previous framework worked for shadow removal, it
is not optimized for a dynamic occluder, which is more common in
interactive systems than a static one.

In this paper, we propose a novel shadow removal technique
for our multiple overlapping projection system by extending the
previously proposed distributed optimization framework. The cen-
tre of the contributions of the paper is to apply an error propaga-
tion scheme that propagates the current error information (which
is mainly caused by a shadow) to the next frame according to the
motion of the shadow. The new technique improves the tracking re-
sponsiveness (i.e., speed of convergence) to realize faster removal
of dynamic shadows than the previous method. Based on a con-
trol theoretic approach, we evaluate the improvement through an
explicit analysis of the linearized error dynamics. We also con-
duct simulation and physical projection experiments to validate the
shadow removal performance in an environment where a shadow
area moves according to the occluder’s locomotion.

To summarize, this paper makes the following contributions:

• We extend the previously proposed distributed optimization-
based radiometric compensation technique to significantly im-
prove the shadow removal performance by applying an error
propagation scheme.

• We provide the theoretical performance limit of the proposed
technique in terms of the tracking responsiveness using a control
theoretic approach, and show how it outperforms the previous
technique.

• Through simulation and physical projection experiments, we

demonstrate the feasibility of the proposed method in a dynamic
shadow environment, in terms of the removal accuracy and the
speed of convergence.

2. Related Work

Following the pioneering work by Sukthankar et al. [SCS01], sev-
eral approaches have been proposed for shadow removal in multi-
projection systems. All these methods employ multiple overlap-
ping projectors, and single or multiple cameras to capture either
a shadow on the projection surface, or an occluder. Sukthankar et
al. proposed to remove shadows from a projected result assuming a
static image is displayed [SCS01]. Their technique applied a feed-
back process where, at each iteration, it generates a projection im-
age so that the error of the current projected result from the target
appearance is minimized.

As another approach, Jaynes et al. proposed to apply shadow
area detection technique to compute projection images that can
remove shadow areas at each frame without relying on a feed-
back method [JWS04,JWS∗01]. Their methods compare a captured
scene with a predicted projection result to find a shadow region that
was then illuminated by unoccluded projectors. Shadow area de-
tection approach was also proposed by Sugaya et al., who assigned
different intensity values to each projector to identify occluded pro-
jectors from a single captured image of shadows [SMK10]. In an-
other work, synthetic aperture technique using multiple cameras
was used to detect shadow areas, which work even when a part
of cameras cannot observe a projection surface due to occluders
[INS14].

Instead of shadow area detection, occluder detection has been
also applied by some researchers. Summet et al. detected an oc-
cluder by illuminating the scene with infrared (IR) lights and cap-
turing the projection surface with an IR camera [SFC∗07]. Audet et
al. proposed recovering the depth information of an occluder with
two cameras [AC07]. Once the depth information was obtained,
the shadow area of the occluder on the projection surface could be
estimated from the geometric relationships among the projectors,
surface, and occluder.

Although these methods worked well, they heavily rely on a host
computer that has centralized control over all projectors. Therefore,
they are not suitable for our goal that is to realize a highly scalable,
robust, and Plug-and-Play capable shadow removal, as mentioned
in the first section. In our previous work [TIK15], we built a radio-
metric compensation technique that meets our requirements using
a distributed optimization algorithm [NO09]. Similar approach was
also proposed by other researchers [AK10, ASUK14]. Although
our previous technique [TIK15] was not explicitly designed to re-
move shadows as other previous radiometric compensation tech-
niques [BIWG08], it can collaterally remove shadows as a conse-
quence of the radiometric compensation of multiple overlapping
projectors. However, it works well only when the shadow areas do
not move.

In this paper, we extend our previous distributed optimization
framework so that the moving shadow areas are removed more
effectively. The proposed technique in this paper assumes a dis-
tributed cooperative system consisting of a single camera node and
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i ∈L := {1,2, · · · ,n} projector index
j ∈J := {1,2, · · · ,m} pixel index
k ∈ N frame index
x j

i [k] ∈ [0,1] input image
y j[k] ∈ R ( j ∈J ) projected result image
p j

i ∈ R+ (i ∈L , j ∈J ) form factor
r j ∈ R+ ( j ∈J ) target image
d j[k] ∈ R ( j ∈J ) environmental light

Figure 2: Notation.

Figure 3: System architecture.

multiple projector nodes. It shows a clear contrast to the existing
shadow removal results that the following information limitation
is taken into an explicit account: (1) each projector node does not
have any information about other projector nodes, shadow areas,
and target images, (2) the camera node does not have any infor-
mation about the projector nodes either, while having the target
images, and (3) only a broadcast communication from the camera
node to the projector nodes is allowed to suppress the data transfer
bandwidth.

3. Problem Formulation

This section describes the problem formulation of this research,
which is based on the previously proposed distributed feedback al-
gorithm of radiometric compensation [TIK15]. We apply the Bim-
ber’s simple linear model [BEK05] in this paper, while other more
complex linear models can be also applied (e.g., [GPNB04]) . As
with most of radiometric compensation methods, we assume our
projection objects as arbitrarily shaped and textured but limited to
Lambertian surfaces.

3.1. System architecture and problem formulation

We consider a projector-camera system composed of n projector
nodes and one camera node that is regarded as an eye of a hu-
man observer. Projected images from the projector nodes are over-
lapped each other on a projection surface. At a time or frame k,
each projector node i has an input image x j

i [k] ∈ [0,1] and form

factor p j
i for the j-th pixel. In this setting, according to the linear

model [BEK05], the camera observation at the j-th pixel can be
represented as

y j[k] = ∑
i

p j
i x j

i [k]+d j[k], (1)

where d j[k] is environmental light (e.g. ambient light and black off-
set) (Fig. 3). The form factor p j

i represents an attenuation ratio from
the input pixel intensity to the projected result. The form factor is
affected by the reflectance of the surface, the distance between the
projector to the surface, incident angle of projected light, and so
on. The calibration of the form factor is performed normally by
projecting a uniform white image and capturing the reflection on
a projection surface, which should be done only once when each
projector is newly added to the system.

Suppose the camera node has a target image r j at each frame
k. In order to project the target image accurately, we minimize the
following objective function

G(x[k]) =
1
2 ∑

j
(e j[k])2, x[k] = (x j

i [k]), i ∈L , j ∈J , (2)

which is the sum of the squared error

e j[k] = r j− y j[k] = r j−
n

∑
i=1

p j
i x j

i [k]−d j[k], (3)

Symbols of this model are listed in Fig. 2.

3.2. Distributed feedback algorithm of radiometric
compensation

To achieve high scalability and robustness, we assume that x j
i [k]

and p j
i are available only for the projector node i, and that r j and

y j[k] are available only for the camera node. Thanks to the specific
structure of Eq. (2), we can optimize x j

i [k] in such a distributed
setting. The gradient of Eq. (2) is given by

∂G

∂x j
i [k]

=−p j
i e j[k]. (4)

Therefore, if e j[k] is available, each projector node can compute the
gradient without any other information about the other projectors.
For implementation, the camera node can compute and broadcast

ξ
j[k] = Ke j[k] = K(r j− y j[k]) (5)

where K is a positive constant. Then, each projector updates x j
i [k]

by

x j
i [k+1] = P[x j

i [k]+ p j
i ξ

j[k]] (6)

P[x̄] :=


x̄, 0≤ x̄≤ 1,
1, x̄ > 1,
0, x̄ < 0,

x̄ ∈ R, (7)

where P represents a clipping (or projection) process to avoid sat-
urated pixel values. This algorithm is equivalent to a projected gra-
dient method to minimize G where K works as a stepsize. Actually,
it can be proven that this update rule with sufficiently small K makes
x j

i [k] converge to the optimal value in a suitable sense [Ste15].

submitted to COMPUTER GRAPHICS Forum (1/2017).



4 J. Tsukamoto, D. Iwai & K. Kashima / Distributed Optimization for Shadow Removal

Figure 4: Simulated shadow removal results in a simple case.

To analyze the dynamical stability, let us consider the following
difference equation where the saturation P and disturbance d is
ignored:

e j[k+1] = r j− y j[k+1] (8)

= (1−κ
jK)e j[k] (9)

with

κ
j := ∑

i
(p j

i )
2. (10)

Therefore, a necessary and sufficient condition for this system to
be stable is given by

0 < K <
2

κ j . (11)

As described above, once ξ j[k] is broadcasted to all the projector
nodes from the camera node, the projector nodes can compute in-
put images without other communications among the nodes in the
system. This is a completely distributed process, and furthermore,
it is theoretically guaranteed that removal or addition (i.e., plug-out
or plug-in) of projector nodes at run time does not affect the con-
vergence performance. Please refer to [TIK15] for more detailed
information about the algorithm.

3.3. Problem setting

Now, we explain the situation of our interest in this paper. Suppose
that an object occludes the projection of some projectors, but not
the camera observation; see Fig. 3. We assume that shadow regions
in the captured image coordinate are predictable one frame ahead,
e.g., by using optical flows [Far03]. Our goal is to remove shadow
caused by the occlusion.

Let us see what happens if the aforementioned distributed feed-
back algorithm (see Sec. 3.2) is applied to this situation. Without
loss of generality, we consider a simple example case as follows.
The target appearance that should be observed by the camera is
uniform gray, and all projectors have the same, spatially uniform
form factors. An object occludes only a single projector. A shadow
appears from the left side in the captured image coordinate, and
moves rightward at a constant velocity.

When no feedback structure is applied, the occluded pixels are

not compensated and remain dark; see Fig. 4(top). On the other
hand, the distributed feedback algorithm is effective in this situa-
tion because it can manage the plug-out of a projector which is es-
sentially the same situation as the emergence of shadow [TIK15].
The projection result recovers gradually because other occlusion-
free projectors compensate for the shadow by the distributed feed-
back; see Fig. 4(middle). It should be noted that this phenomena
is identical over all pixels because this feedback scheme is pixel-
independent and reacts to the occlusion of each pixel. On the other
hand, we achieve a more efficient shadow removal as shown in
Fig. 4(bottom), where the shadow vanishes more quickly than our
previous method [TIK15]. In the next section, we describe how the
proposed method achieves such superior performance.

4. Proposed Algorithm

We propose an algorithm to remove undesirable shadows generated
by moving occluders. From Sec. 4.1 to Sec. 4.3, we explain our pro-
posed method assuming a simplified situation described in Sec. 3.3
where a moving object occludes a single projector. A shadow ap-
pears at the leftmost pixels including the pixel of j = 1 at time
k = 1, and moves rightward at the velocity of 1 [pixel/frame] as
shown in Fig. 4. Then, we formulate the proposed method in more
general form in Sec. 4.4. We denote F as the set of occlusion-free
projectors (F = {2,3, ...,n} if only the projector 1 is subject to the
occlusion).

4.1. Shadow removal via spatio-temporal prediction

We focus on a specific row of captured images, say the one includ-
ing the pixel of j = 1. From the assumption mentioned above, a
pixel j begins being occluded at time k = j just before the observa-
tion. Let us define s[ j] by

s[ j] = s[ j−1]+η (r j[ j]− y j[ j])︸ ︷︷ ︸
e j [ j]

, (12)

where η is a positive constant. s[ j] is physically the accumulation
of error between the target and displayed intensities. Note that we
consider the special case of k = j to simplify the explanation of
our proposed technique by assuming that the shadow moves at a
constant velocity of 1 [pixel/frame]. General discussion is provided
in Section 4.4.

We can calculate s[ j] when the projection error at the j-th pixel
at time k = j is observed. Then, we modify the broadcast data ξ in
Eq. (5) as

ξ
j+1[ j] = Ke j+1[ j]+ s[ j], (13)

only for a pixel where the shadow appears in the next frame, that is,
( j+ 1)-th pixel at time k = j in this particular situation. The pro-
cessing at the projector node is the same as Eq. (6). The distributed
structure is retained in that the camera node does not require addi-
tional information. The first term of the right hand side is the pixel-
wise feedback compensation as in the previous method. The newly
added second term is aimed at cancelling the effect of the shadow.
More specifically, when the shadow appears at the j-th pixel at time
k = j, y j[ j] becomes smaller, which leads to larger e j[ j]. We expect
that similar phenomena (i.e., intensity reduction of the projected
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result) happens at the ( j + 1)-th pixel at time k = ( j + 1) by the
shadow’s movement. To prevent this, Eq. (12) increases s[ j], which
is added to ξ j+1[ j]. As a result y j+1[ j+1] increases, which reduces
the performance deterioration caused by the shadow. Conceptually,
the proposed method propagates the error information to the next
frame to reduce the shadow effect at newly occluded pixels.

The recovery from the occlusion, where newly activated projec-
tors generate unnecessary lights, can be handled in a similar man-
ner. In that case, F denotes the set of all the active projectors after
the recovery (F = {1,2, ...,n} when the obstacle occludes no pro-
jector). The proposed method is hereinafter referred to as error
propagation method.

4.1.0.1. Mathematical analysis: We conduct a mathematical
analysis for linear dynamics ignoring the saturation P and distur-
bance d. This also tells us how to determine the parameters K,η ,ζ .
For simplicity in the analysis, we further assume

• Pixel-wise feedback control achieves the perfect projection be-
fore the arrival of the occlusion, that is,

e j[k] = 0 for k < j. (14)

• The spatial non-uniformity of the form factors of the occlusion-
free projectors is ignored such that

∑
i∈F

(p j
i )

2 = κ f , ∀ j. (15)

The occlusion of j-th pixel at the next frame (i.e., k = j) causes
error

e j
c := r j− ∑

i∈F
p j

i x j
i [ j−1],

when no compensation is performed.

Let us consider the error at j-th pixel at time k = j. First, we have

e j[ j] = r j− ∑
i∈F

p j
i x j

i [ j] (16)

= r j− ∑
i∈F

p j
i

(
x j

i [ j−1]+ p j
i ξ

j[ j−1]
)

(17)

= e j
c−κ f (Ke j[ j−1]+ s[ j−1]) (18)

= e j
c−κ f s[ j−1]. (19)

By combining this with (12), we obtain

e j[ j]− e j−1[ j−1] = (e j
c− e j−1

c )−κ f (s[ j−1]− s[ j−2]) (20)

= (e j
c− e j−1

c )−κ f ηe j−1[ j−1] (21)

and consequently,

e j[ j] = (1−κ f η)e j−1[ j−1]+ (e j
c− e j−1

c ). (22)

Therefore, the error system is stable if and only if

−1 < 1−κ f η < 1, (23)

or equivalently

0 < κ f η < 2.

Actually, if the projection profile is spatially uniform such that

e j
c = ēc for all j, (24)

e j[ j] converges to 0 as j increases, independent of ēc. This is why
the shadow effect is unobservable for k = 20 in Fig. 4(bottom).
More generally, considering the effect of the previous pixel-wise
feedback, we have

e j[k] = (1−κ f η) j−1(1−κ f K)k− j ēc (25)

for k ≤ j. This explains the whole dynamical behavior in Fig. 4;
(top) for K = η = 0, (middle) for K > 0 and η = 0, and (bottom)
for K > 0 and η > 0.

The assumption Eq. (24) is not essential. Actually, the perfor-
mance for general case can also be analyzed based on simple
spatio-temporal frequency response calculus. This is omitted be-
cause it seems beyond the main interest of an audience.

4.2. Role of the servo mechanism

Some remarks on the structure of the proposed algorithm are given
in this section. Again, the projection profile before the occlusion is
assumed to be spatially uniform such that

e j
c = ēc, ∀ j.

It should be noted that perfect shadow removal is achieved if

s[ j] = s? :=
ēc

κ f

because this completely cancels the effect of the occlusion through
the broadcast and projection update; see Eq. (19). However, s[ j]
should be calculated at the camera node where the form factor data
κ f is unavailable. This is the essential difficulty of the shadow re-
moval in the distributed environment in this paper.

To prevent this issue, we utilized the servo mechanism that can
track arbitrary step signals. This is implemented in the update of
s[ j] in a accumulation manner. As a result, as far as η satisfies
Eq. (23), we obtain

s[ j]→ s? as j→ ∞

independent of η and ēc. This is the reason why we successfully
achieved asymptotically perfect shadow removal without the infor-
mation of κ f .

One may think that a naïve algorithm

s[ j] = η̄e j[ j] (26)

can provide a similar effect. In this case, the result is very sensitive
to the choice of η̄ , and stationary shadow remains although it is re-
duced; see Fig. 5(a) where ēc = 0.3 and κ f = 0.625. It can readily
be verified that κ f η̄ < 1 is required for the stability, and that the
stationary error is equal to ēc/(1+κ f η̄). This clarifies the perfor-
mance limitation of Eq. (26) in that 50% removal is not possible.
This shows a clear contrast to the asymptotic perfect shadow re-
moval of the proposed algorithm whose performance is shown in
Fig 4(bottom). Fig. 5(b) shows the dynamical behavior of e j[ j].

4.3. Effect of saturation and modified algorithm

In Eq. (12), the effect of shadow that should be compensated for in
the next pixel is measured by the error e j[ j]. However, when there is
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(a) (b)

Figure 5: Simulation of naïve algorithm in Sec. 4.2: (a) simulated
shadow removal results when Eq. 27 is applied with various η̄ un-
der the same simulation condition of Fig.4, (b) dynamical behavior
of e j[ j] (prev: previous method, prop: proposed method).

some stationary error due to the saturation, e j[ j] cannot necessarily
capture the effect of shadow. Instead, we can implement

s[ j] = s[ j−1]+η(y j[ j]− y j[ j−1]) (27)

where the difference between the projection result before/after oc-
clusion is regarded as the effect of the occlusion. This seems to be
more suitable for the measure of the shadow effect because this is
free from the stationary error at the cost of the memory for y j[ j−1].
This modified method is hereinafter referred to as change propa-
gation method.

For linear analysis similar to Sec. 4.1, we can combine Eq. (20)
with Eq. (27) to have

e j[ j]− e j−1[ j−1] = (e j
c− e j−1

c )−κ f (s[ j−1]− s[ j−2]) (28)

= (e j
c− e j−1

c )−κ f η(e j−1[ j−1]− e j−1[ j−2])
(29)

= (e j
c− e j−1

c )−κ f ηe j−1[ j−1], (30)

where we utilized y j−1[ j−1]−y j−1[ j−2] = e j−1[ j−1]−e j−1[ j−
2]. Therefore, we obtain identical equation to Eq. (22) in this sim-
plified analysis. This means that error propagation and change
propagation produce the same projection result as far as Eq. (14)
is satisfied.

4.4. General algorithm

Instead of the simplified situation discussed above, we formulate
our proposed algorithms for more general situation, which will be
implemented in our experiments.

4.4.0.1. Error propagation method: Let O[k] denotes the set of
newly occluded pixels at time k (O[k] = {k} in the previous simpli-
fied case). In this general case, we can replace Eq. (12) by

s[k] = s[k−1]+η
1
|O[k]| ∑

j∈O[k]
e j[k], (31)

Figure 6: Target images and projection surfaces: (let column) tar-
get image, (second column) the appearance of projection surface
under environment light, (third column) the surface under uniform
white illumination (i.e., form factor) by projector 1, and (fourth
column) that by projector 2.

where |O[k]| is the number of pixels contained in O[k]. Then, we
replace Eq. (13) by

ξ
j[k] = Ke j[k]+ s[k] for j ∈ O[k+1]. (32)

For the pixels which do not belong to O[k+1], the broadcast data
ξ j[k] is computed using Eq. (5).

4.4.0.2. Change propagation method: In the change propaga-
tion method, we can replace Eq. (27) by

s[k] = s[k−1]+η
1
|O[k]| ∑

j∈O[k]
(y j[k]− y j[k−1]), (33)

which is then used to compute the broadcast data using Eq. (32).

5. Experiment

We conducted both physical and simulation experiments to validate
the proposed algorithm.

5.1. Physical experiment

We built a projector-camera system consisting of two projectors
(Epson EH-TW410) and one camera (PointGrey Flea3 FL3-U3-
88S2C-C, 1600×1200 pixels). Figure 1(left) shows an overview
of the whole system. During the projection, a rectangular board,
which is attached on a locomotion robot (LEGO R© MindStorm
EV3) as in Fig. 1(left), started to move at time k = 0 from left to
right in front of a projection surface at a almost constant speed with
the average velocity of 16 [mm/s]. The camera node and projector
nodes were implemented on a single laptop computer (Sony VAIO-
Duo 11 SVD1123AJ, CPU: Core i7 3687U 2.10GHz 2.60GHz,
RAM: 8.0GB), which were virtually separated into independent
systems. Each (virtual) projector node does not have any informa-
tion about the occlusion.

We assume that the robot movement was the same in every trial
through the experiment. Each trial took 50 frames. We did not pre-
dict shadow regions during runtime. Instead, we approximated the
shape of a shadow region as a rectangle, and manually measured its
velocity in the camera coordinate system in advance. The measured
average velocity was 250 [pixel/frame].
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We prepared two experimental conditions, lenna and mandrill,
as the combinations of different target images and projection sur-
faces as shown in Fig. 6. Two images, lenna and mandrill, were
applied as the target images. The projection surfaces were planar
boards, on which different brick textures were printed. The form
factors are also shown in Fig. 6.

From Eq. (25), the optimal parameter values for η and K are nat-
urally 1/κ f . However, it is impossible to obtain exact value of κ f
due to measurement errors. In addition, it is desirable from an im-
plementation viewpoint that a common κ f is used for all pixels. A
histogram of the form factors of both the projectors shown in Fig. 6
is given by Figure 7. Considering this distribution and Eq. (15), let
us regard κ f = 1.7 by taking the nominal value of R channel which
is middle among the 3 color channels.

5.1.1. Shadow removal performance

We compared the shadow removal performances among the previ-
ous method [TIK15], the proposed error propagation method, and
the change propagation method. Because the robot moved at almost
constant speed, we applied a fixed value 250 [pixel/frame] (i.e., the
measured average velocity) as the velocity of the shadow region
movement v to predict the positions of shadow pixels in the next
frame. K and η took 0.6 as 1/κ f .

Figure 1(right) shows the projected result sequences in the lenna
condition. As shown in the figure, we confirmed that the proposed
methods (both error propagation and change propagation) provided
better shadow removal performances. Figure 8(a) shows the time
series of the mean square errors (MSEs) in both the lenna and man-
drill conditions. Note that the MSEs were computed using 8-bit
image data. A one-way analysis of variance (ANOVA) with re-
peated measures showed statistically significant differences among
the MSEs of all the methods in the lenna condition (p < 0.01) and
the mandrill condition (p < 0.01). Post-hoc analysis was then per-
formed using Ryan’s method for pairwise comparison. It showed
statistically significant differences between the previous and er-
ror propagation methods, and the previous and change propagation

Figure 7: Histogram of ∑i∈F (p j
i )

2,F = {1,2}.

(a)

(b)

Figure 8: Mean squared error (MSE): (a) the time series of MSEs,
(b) the average with standard error of MSEs of 6 ≤ k ≤ 50 (**:
p < 0.01).

Figure 9: Broadcasted data ξ .

methods in both the lenna and mandrill conditions (p < 0.01) as
shown in Fig. 8(b). From this result, we quantitatively confirmed
that both the proposed methods could display the target images
with significantly less errors than the previous method in both con-
ditions. Therefore, we regard the parameter values of K = 0.6,
η = 0.6, v = 250 were suitable for this experimental setup.

Figure 9 shows the broadcasted data ξ at the 15th frame. We
could see the propagated information indicated by the yellow ar-
rows. Thanks to this error/change propagation, the proposed meth-
ods outperformed the previous method.

5.1.2. Parameter robustness

In this section, we evaluted the parameter robustness by conducting
the same shadow removal experiments using the change propaga-
tion method with different η and v values from the suitable ones
(i.e., η = 0.6, v = 250).
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(a)

(b)

Figure 10: Experimental results of the change propagation method
with different η and the previous method: (a) projected results at
k = 24,25,26 in the lenna condition (the red frame indicates the
results with the suitable value of η), (b) the time series of MSEs.

5.1.2.1. Evaluation of η: We conducted the shadow removal ex-
periments with different η values while the other parameter values
were not changed from the suitable ones. In particular, we applied
the following values: η = 0.1,0.4,0.6,1.0, where 0.6 was the suit-
able one. Figure 10(a) shows the projected result sequences of the
previous method and the change propagation methods with differ-
ent η values. Figure 10(b) shows the time series of MSEs. From
the results, we confirmed that the proposed system with different
η values provided better shadow removal results than the previ-
ous method, while the improvement is not so significant with the
smaller η value (i.e., η = 0.1).

(a)

(b)

Figure 11: Experimental results of the change propagation method
with different v: (a) projected results at k = 24,25,26 in the man-
drill condition (the red frame indicates the results with the mea-
sured value of v), (b) the time series of MSEs.

5.1.2.2. Evaluation of v: We conducted the shadow removal ex-
periments with different v values while the other parameter values
were not changed from the suitable ones. In particular, we applied
the following values: v = 150,200,250,300,350 [pixel/frame],
where 250 was the measured average velocity. Figure 11(a) shows
the projected result sequences of the change propagation methods
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(a)

(b)

(c)

Figure 12: Physical experiment with a complex occluder: (a) the
occluder and projection surface, (b) projected results (contrast en-
hanced for easier comparison), (c) the time series of MSEs.

with different v values. Figure 11(b) shows the time series of MSEs.
We found that the errors were reduced from the previous method
even when applied velocity values were different from the mea-
sured one. Taking a more in-depth look at the results n Fig. 11(b),
we could find the velocity value of v = 300 provided results very
close to those with the measured velocity value v = 250. From this
evaluation, we confirmed that the shadow velocity v should be pre-
dicted during runtime, which however should not be perfectly ac-
curate. More particularly, the prediction error was more acceptable
when it was smaller and when velocity was overestimated than un-
derestimated. We discuss the shadow velocity (or the next shadow
area) estimation in Sec. 6.

5.1.3. Complex Occluder

We conducted another experiment with a complex shape occluder
that is a Stanford bunny fabricated from a 3D printer (Fig. 12(a)).
For this additional experiment, we used different equipment. In par-
ituclar, a PC (CPU: Intel Core i7-960 3.20 GHz, RAM: 12 GB) con-
trolled two projectors (Epson EMP-1710 and EMP-1715), a camera
(PointGrey Flea3 FL3-U3-13S2C, 1280×960 pixels), and a slide
stage (SUS XA-50L-600E) that moved the occluder. We prepared
a projection surface whose texture was shown in Fig. 12(a). We ap-
plied the same target images (lenna and mandrill) as the previous
experiment. Note that their contrasts were adjusted in advance to fit
the limited dynamic range of the projectors. The procedure of the
experiment was same as the previous one.

Figure 12(b) shows the projected result sequences of the pre-
vious, error propagation, and change propagation methods. Fig-
ure 12(c) shows the time series of MSEs, in which errors in the
proposed methods (error propagation and change propagation) are
clearly smaller than those in the previous method. From this eval-
uation, we confirmed that the proposed methods provided better
compensation qualities than the previous method even when an oc-
cluder’s shape was relatively complex.

5.2. Simulation experiment for complex shadow movement

We conducted a simulation experiment to validate our proposed
methods for more complex shadow movement. A natural image,
whose image size was 512×512 pixels, was used as a target ap-
pearance as shown in Fig. 13(a). We captured the sequence of sil-
houette of a waving human hand as shadow regions of the experi-
ment as shown in Fig. 13(b, top row). Therefore, we could test the
shadow removal methods with temporally varying moving direc-
tions and speeds. In this experiment, shadow regions were known
in advance, which were used in computing Eqs. 31 and 33.

Figures 13(b) and (c) show the simulation results. From
Fig. 13(b), we could find that both the proposed methods provided
better shadow removal appearances for both horizontal and ver-
tical movements than the previous method. The graph shown in
Fig. 13(c) quantitatively showed that the proposed methods could
remove shadows with less errors than the previous method. There-
fore, we confirmed that the proposed method worked for a moving
shadow that changes its moving direction and speed during run-
time.

6. Discussion

The proposed methods (error propagation and change propagation)
provided faster shadow removal with less errors than the previous
feedback method. We would like to emphasize again that the pro-
posed methods are designed in a distributed manner, where there is
no centralized controller that computes projection images for all the
projectors. Broadcast from the camera node to the projector nodes
is the only one communication channel in the system. In this pa-
per, we proposed to modify the previous distributed optimization
method by adding error or change propagation information to the
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(a) (c)

(b)

Figure 13: Simulation experiment: (a) target image, (b) shadow
region and simulated result, (c) the time series of MSEs.

broadcasting data. In particular, the error/change propagation in-
formation, computed from pixels in the current shadow region, is
added to the predicted next shadow region of the broadcasting data.

Although shadow prediction is not the focus of our paper, it is
needed in our method as discussed above. In Sec. 5.1.2, we con-
firmed that the prediction of the next shadow regions does not have
to be perfect, but should be accurate to some extent. For example, in
our experimental condition where shadow moved in one direction
at a constant speed, the proposed method worked well with predic-
tion errors of 20 % of the ground truth (error: 50 pixels, ground
truth: 250 pixels). Shadow prediction with this level of errors can
be integrated with our method by applying the combination of a
shadow region detection such as [SFC∗07] and an optical flow de-
tection [Far03]. We believe that it is also possible to detect shadow
regions for free form objects (e.g., human body) by applying a de-
formable object tracking technique using the contour information
such as [RVTY05]. Once it is integrated, our method can remove
moving shadows whose moving directions and velocities change
during runtime, as shown in our simulation experiment (Sec. 5.2)

The current system runs at around 2 fps on a laptop computer
without any optimizations. Because most parts of the proposed
methods can be easily parallelized and implemented on GPU, it

is technically possible to run the proposed methods in real-time.
Decreasing the processing time generally leads to a better shadow
prediction, and consequently, improves the shadow removal perfor-
mance of the proposed methods.

It should be noted that the proposed methods also work for plug-
in and plug-out situations. Although we did not explicitly demon-
strate them in our experiments, shadow removal process shown in
our experiments essentially contains plug-in and plug-out. In par-
ticular, shadow removal is equivalent to plug-out, because in both
cases contributions from some projectors in some areas are lost.
On the other hand, plug-in, in which newly added projectors start
to project images on a surface, is equivalent to a situation where oc-
cluded projectors that become visible from a shadow area resume
projecting images onto it.

7. Conclusion

We proposed a novel shadow removal algorithm based on the
spatio-temporal prediction of the shadow regions. The effective-
ness and robustness were examined through mathematical analysis
and experiments. The most important contribution of this work is
that we achieved an efficient shadow removal even in a distributed
projector-camera system, in which only broadcasting from the cam-
era node to the projector nodes is available. Thus, we realized
a highly scalable and robust shadow removal compared to previ-
ous methods that assumed centralized control over all the projector
nodes.

As noted in Sec. 1, we developed the proposed technique as-
suming a situation where multiple projection surfaces are located
at different depths. For capturing occlusion-free images in such
situation, we plan to apply synthetic aperture capturing technique
[INS14], which can be implemented as a simple extension of the
system proposed in this paper, and would be one of the future
works. As another future work, we will integrate a shadow pre-
diction with the proposed method, and implement the algorithm on
GPU to make a system running in real-time.
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